

Home

Welcome to the documentation page of binary_tree!

[image: _images/binary_tree.svg]
 [https://travis-ci.org/han-keong/binary_tree][image: Documentation Status]
 [https://binary-tree.readthedocs.io/en/latest/?badge=latest]
Contents

	About
	Installation

	Features
	Construct a node

	Check a node

	Set up a binary tree

	Traverse a binary tree

	Analyze a binary tree

	Credits

	Documentation
	Node
	Comparing the value of a Node instance

	Getting the binary tree structure of a Node instance

	Iterating over the binary tree structure of a Node instance

	node
	Checking for a Node instance

	Checking for a child Node instance

	Checking for a Node instance in a binary tree structure

	tree
	Constructing a Node instance with a binary tree structure

	Traversing a Node instance with a binary tree structure

	Analyzing a Node instance with a binary tree structure

About

binary_tree provides a Node object, node functions, and tree functions for a binary tree data structure.

Installation

To install binary_tree, run this in your terminal:

$ pip install git+git://github.com/han-keong/binary_tree

The conventional way of importing from binary_tree is to do:

from binary_tree import Node, node, tree

You may also import everything by doing:

from binary_tree import *

Features

	Construct a node

	Node attributes

	Node initialization

	Setting Node attributes

	Check a node

	is_node()

	is_left()

	is_right()

	is_leaf()

	is_root()

	is_orphan()

	Equality tests

	Set up a binary tree

	from_string()

	from_orders()

	connect_nodes()

	to_string()

	Traverse a binary tree

	traverse_pre_order()

	traverse_in_order()

	traverse_post_order()

	traverse_level_order()

	traverse()

	Iterating over a Node

	Analyze a binary tree

	is_symmetrical()

	max_depth()

	get_path()

	all_paths()

	has_sum()

	find_path()

	get_lca()

Construct a node

Node attributes

Every Node has the following attributes:

	Stored value

	value

	Children nodes

	left

	right

	Neighbour nodes

	prev

	next

	Parent node

	parent

Note

All the attributes above besides value should be instances of Node if they are present.

Node initialization

When initializing a Node, a value must be provided.

>>> left_node = Node(2)

Meanwhile, the other attributes can be set using keyword arguments.

>>> parent_node = Node(1, left=left_node)

Setting Node attributes

Attributes that are reciprocative are set automatically.

For example, when you set the left or right attribute of a Node instance, the child’s parent attribute is also set behind the scenes.

>>> left_node.parent is parent_node
True

>>> right_node = Node(3)
>>> parent_node.right = right_node
>>>
>>> right_node.parent is parent_node
True

Likewise, setting the prev or next attribute of a Node instance will affect the other corresponding neighbour attribute.

>>> right_node.prev = left_node
>>>
>>> left_node.next is right_node
True

Check a node

The following node functions can be used to check if a Node has certain properties.

is_node()

is_node() checks if an object is an instance of Node.

>>> node.is_node(parent_node)
True

is_left()

is_left() checks if an instance of Node is a left child.

>>> node.is_left(parent_node.left)
True

is_right()

is_right() checks if an instance of Node is a right child.

>>> node.is_right(parent_node.right)
True

is_leaf()

is_leaf() checks if an instance of Node is a leaf node.

>>> node.is_leaf(parent_node.right)
True

is_root()

is_root() checks if an instance of Node is a root node.

>>> node.is_root(parent_node):
True

is_orphan()

is_orphan() checks if an instance of Node is an orphan node.

>>> lonely_node = Node(1)
>>> node.is_orphan(lonely_node)
True

Equality tests

Node instances have a special way of testing equality, which is to tentatively compare the value of self and the other object.

If the other object does not have a value attribute, the object itself is taken as the basis of comparison.

This allows the following comparisons to work:

>>> parent_node == Node(1)
True

>>> parent_node == 1
True

If you would like to test if two instances of Node have the same binary tree structure, you may compare their repr() strings.

>>> parent_node2 = Node(1, left=Node(2), right=Node(3))
>>>
>>> repr(parent_node) == repr(parent_node2)
True

Set up a binary tree

The tree module contains all the relevant functions for binary tree structures.

from_string()

A tree string should be in level-order and separated by commas.

>>> tree_string = "1,2,3,4,5,6"

Empty spaces can be represented by an immediate comma or "null" to be explicit.

>>> tree_string = "1,2,3,4,,5,6"
>>> tree_string = "1,2,3,4,null,5,6"

Pass the string into from_string() to generate a Node instance with the desired binary tree structure.

>>> root = tree.from_string(tree_string)

You can use repr() to see the binary tree structure of the Node instance.

>>> repr(root)
"Node(1, left=Node(2, left=Node(4)), right=Node(3, left=Node(5), right=Node(6)))"

from_orders()

Another way to set up a binary tree structure is with its in-order and pre-order traversals.

>>> in_order = [4,2,1,5,3,6]
>>> pre_order = [1,2,4,3,5,6]

Pass the appropriate key and the traversals into from_orders() to generate a Node instance with the original tree structure.

>>> root = tree.from_orders("in-pre", in_order, pre_order)
>>> repr(root)
"Node(1, left=Node(2, left=Node(4)), right=Node(3, left=Node(5), right=Node(6)))"

Alternatively, you can use the in-order and post-order traversal.

>>> post_order = [4,2,5,6,3,1]
>>> root = tree.from_orders("in-post", in_order, post_order)
>>>
>>> repr(root)
"Node(1, left=Node(2, left=Node(4)), right=Node(3, left=Node(5), right=Node(6)))"

Note

There should not be duplicates present in in_order and pre_order or post_order.

connect_nodes()

When using the above methods to construct a Node instance, the neighbour nodes in each level of its binary tree structure are already connected using connect_nodes().

You may use this function again to reconfigure the tree structure of a root Node instance after modifying it, or to connect one that was manually set up.

>>> root.right.right = None # Prune the right branch of the right child
>>> tree.connect_nodes(root)

to_string()

Just as a binary tree structure can be constructed from string, it can be deconstructed back into one too, using to_string().

>>> tree.to_string(root)
"1,2,3,4,,5"

Traverse a binary tree

With a binary tree structure set up, there are several tree functions you can use to traverse it.

traverse_pre_order()

traverse_pre_order() traverses the binary tree structure of a root Node instance in pre-order.

>>> list(tree.traverse_pre_order(root))
[Node(1), Node(2), Node(4), Node(3), Node(5)]

traverse_in_order()

traverse_in_order() traverses the binary tree structure of a root Node instance in in-order.

>>> list(tree.traverse_in_order(root))
[Node(4), Node(2), Node(1), Node(5), Node(3)]

traverse_post_order()

traverse_post_order() traverses the binary tree structure of a root Node instance in post-order.

>>> list(tree.traverse_post_order(root))
[Node(4), Node(2), Node(5), Node(3), Node(1)]

traverse_level_order()

traverse_level_order() traverses the binary tree structure of a root Node instance in level-order.

>>> list(tree.traverse_level_order(root))
[[Node(1)], [Node(2), Node(3)], [Node(4), Node(5)]]

Note

traverse_level_order() will yield lists containing instances of Node. Each list represents a level in the binary tree structure.

traverse()

A single dispatch function, traverse(), is available for convenience.

>>> list(tree.traverse(root, "pre"))
[Node(1), Node(2), Node(4), Node(3), Node(5)]

>>> list(tree.traverse(root, "in"))
[Node(4), Node(2), Node(1), Node(5), Node(3)]

>>> list(tree.traverse(root, "post"))
[Node(4), Node(2), Node(5), Node(3), Node(1)]

>>> list(tree.traverse(root, "level"))
[[Node(1)], [Node(2), Node(3)], [Node(4), Node(5)]]

Iterating over a Node

You can also iterate over an instance of Node to traverse its binary tree structure.

>>> for node in root:
... print(node)
Node(1)
Node(2)
Node(3)
Node(4)
Node(5)

Note

Iteration over a Node instance goes by level-order traversal.

Analyze a binary tree

The following tree functions are available to find certain properties of a binary tree structure.

is_symmetrical()

is_symmetrical() checks for symmetry in the binary tree structure of a root Node instance.

>>> tree.is_symmetrical(root)
False

max_depth()

max_depth() calculates the maximum depth of the binary tree structure of a root Node instance.

>>> tree.max_depth(root)
3

get_path()

get_path() traces the ancestry of a Node instance.

>>> tree.get_path(root.right.left)
[Node(1), Node(3), Node(5)]

all_paths()

all_paths() finds every leaf path in the binary tree structure of a root Node instance.

>>> for path in tree.all_paths(root):
... print(path)
[Node(1), Node(2), Node(4)]
[Node(1), Node(3), Node(5)]

Note

all_paths() searches for paths using post-order traversal.

has_sum()

has_sum() determines if there is a path in the binary tree structure of a root Node instance that adds up to a certain value.

>>> tree.has_sum(root, 7)
True

find_path()

find_path() finds the path of some Node instance or value in the binary tree structure of a root Node instance.

>>> tree.find_path(5)
[Node(1), Node(3), Node(5)]

>>> tree.find_path(2)
[Node(1), Node(2)]

get_lca()

get_lca() gets the lowest common ancestor of two or more Node instances or values in the binary tree structure of a root Node instance.

>>> tree.get_lca(root, 2, 4)
Node(2)

>>> tree.get_lca(root, 1, 3, 5)
Node(1)

Note

It is possible to pass the value of the Node instance you wish to refer to because of the way equality is tested for. However, the value must be unique within the binary tree structure.

Credits

binary_tree was written by Han Keong <hk997@live.com>.

This package was created with Cookiecutter [https://github.com/audreyr/cookiecutter] and the audreyr/cookiecutter-pypackage [https://github.com/audreyr/cookiecutter-pypackage] project template.

Documentation

This module provides a Node class, node functions, and tree functions for a binary tree data structure.

Example

from binary_tree import from_string, from_orders, traverse

node = from_string("1,2,,3,4,,5")

in_order = list(traverse(node, "in"))
pre_order = list(traverse(node, "pre"))
node2 = from_orders("in-pre", in_order, pre_order)

>>> repr(node) == repr(node2)
True

Node

	
class binary_tree.Node(value, **nodes)

	The basic unit of a binary tree structure.

	
value

	The node value.

	
left

	The left child Node instance, if present.

	
right

	The right child Node instance, if present.

	
prev

	The left neighbouring Node instance, if present.

	
next

	The right neighbouring Node instance, if present.

	
parent

	The parent Node instance, if present.

Comparing the value of a Node instance

	
Node.__eq__(other)

	Tentatively compare the value of self and other.

If other does not have a value, use other itself as a basis of comparison.

	Parameters

	other – Any object.

	Returns

	True if the value of self is equal to the value of other, or other itself- and False otherwise.

Getting the binary tree structure of a Node instance

	
Node.__repr__()

	Get the full representation of self.

repr() comprises of value, the repr() of left if present, and the repr() of right if present.

	Returns

	A full representation of self.

	Return type

	str

Iterating over the binary tree structure of a Node instance

	
Node.__iter__()

	Traverse the binary tree structure of self in level-order.

	Yields

	A Node in the binary tree structure of self.

node

This module contains functions for the Node class.

Checking for a Node instance

	
binary_tree.node.is_node(obj)

	Check if obj is an instance of Node.

	Parameters

	obj – Any object.

	Returns

	True if obj is an instance of Node, False otherwise.

Checking for a child Node instance

	
binary_tree.node.is_left(node)

	Check if node is a left child.

	Returns

	True if node is the left node of its parent, False otherwise, or if its parent is not set.

	
binary_tree.node.is_right(node)

	Check if node is a right child.

	Returns

	True if node is the right node of its parent, False otherwise, or if its parent is not set.

Checking for a Node instance in a binary tree structure

	
binary_tree.node.is_leaf(node)

	Check if node is a leaf node.

	Returns

	True if node has a parent but no left or right node, False otherwise.

	
binary_tree.node.is_root(node)

	Check if node is a root node.

	Returns

	True if node has a left or right node but no parent node, False otherwise.

	
binary_tree.node.is_orphan(node)

	Check if node is an orphan node.

	Returns

	True if node has no parent, left, and right node, False otherwise.

tree

This module contains functions for binary trees.

Constructing a Node instance with a binary tree structure

	
binary_tree.tree.from_string(tree_string, cls=<class 'binary_tree.node.Node'>)

	Construct a Node instance with the binary tree structure represented by tree_string.

Initializes the root Node instance (the first level), followed by left and then right for every Node instance per level (level-order).

	Parameters

	
	tree_string (str) – A level-order binary tree traversal, separated by commas.

	cls (type) – The class constructor to use. Defaults to Node.

	Returns

	A newly initialized cls instance with the binary tree structure that represents tree_string. If tree_string has no root value, returns None.

Note

Empty spaces can be represented by an immediate comma or "null" for explicitness.

	
binary_tree.tree.from_orders(kind, in_order, other_order, cls=<class 'binary_tree.node.Node'>)

	Construct a Node instance with the binary tree structure that entails in-order and other_order.

Recursively initializes parent, left, and then right. (pre-order).

	Parameters

	
	kind (str) – Either “in-pre” or “in-post”.

	in_order (list[int, ..]) – The in-order traversal of a binary tree.

	other_order (list[int, ..]) – Either the tree’s pre-order or
post-order traversal.

	cls (type) – The class constructor to use. Defaults to Node.

	Returns

	A newly initialized cls instance with the binary tree structure that entails in_order and other_order. If either arguments are empty, returns None.

	Raises

	
	ValueError – If in_order and other_order do not correspond to a binary tree structure or contain duplicates.

	KeyError – If kind is not one of the accepted keys.

Note

There cannot be any duplicates in in_order and other_order.

	
binary_tree.tree.connect_nodes(root)

	Connect the Node instances in each level of root.

	Parameters

	root – A root Node instance.

	
binary_tree.tree.to_string(root)

	Deconstruct root into a string.

	Parameters

	root – A root Node instance.

	Returns

	A level-order binary tree traversal, separated
by commas.

	Return type

	str

Note

Empty spaces in the tree string are indicated with "null".

Traversing a Node instance with a binary tree structure

	
binary_tree.tree.traverse_pre_order(root)

	Traverse root in pre-order.

Visit parent, left, and then right.

	Parameters

	root – A root Node instance.

	Yields

	A Node instance in the binary tree structure of root.

	
binary_tree.tree.traverse_in_order(root)

	Traverse root in in-order.

Visit left, parent, and then right.

	Parameters

	root – A root Node instance.

	Yields

	A Node instance in the binary tree structure of root.

	
binary_tree.tree.traverse_post_order(root)

	Traverse root in post-order.

Visit left, right, and then parent.

	Parameters

	root – A root Node instance.

	Yields

	A Node instance in the binary tree structure of root.

	
binary_tree.tree.traverse_level_order(root)

	Traverse root in level-order.

Visit root (the first level), followed by left and then right for every Node instance per level.

	Parameters

	root – A root Node instance.

	Yields

	A list of Node instances representing a level in root.

	
binary_tree.tree.traverse(root, kind)

	Forward root to the kind of traversal.

	Parameters

	
	root – A root Node instance.

	kind (str) – “pre” or “in” or “post” or “level”.

	Returns

	The generator iterator of the kind of traversal (with root passed to it).

	Raises

	KeyError – If kind is not one of the possible options.

Analyzing a Node instance with a binary tree structure

	
binary_tree.tree.is_symmetrical(root)

	Check for symmetry in root.

	Parameters

	root – A root Node instance.

	Returns

	True if the binary tree structure of root is symmetrical, False otherwise.

	
binary_tree.tree.max_depth(root)

	Calculate the maximum depth of root.

	Parameters

	root – A root Node instance.

	Returns

	The total number of levels in the binary tree structure of root.

	Return type

	int

	
binary_tree.tree.get_path(node)

	Trace the ancestry of node.

	Parameters

	node – A Node instance in a binary tree.

	Returns

	A list of Node instances from the greatest ancestor to node.

	
binary_tree.tree.all_paths(root)

	Find every leaf path in root.

Search for leaf nodes in root using post-order traversal.

	Parameters

	root – A root Node instance.

	Yields

	A list of Node instances from root to a leaf Node instance.

	
binary_tree.tree.has_sum(root, value)

	Determine if there is a path in root that adds up to value.

	Parameters

	
	root – A root Node instance.

	value – The sum to check for.

	Returns

	True if a path that adds up to value exists in root, False otherwise.

	
binary_tree.tree.find_path(root, node)

	Find the path of (the Node instance of) node in root.

	Parameters

	
	root – A root Node instance.

	node – A Node instance or value in root.

	Returns

	A list of every Node instance from root to (the Node instance of) node, or None if node is absent in root.

Note

If node is a value, it must be unique within the binary tree structure of root.

	
binary_tree.tree.get_lca(root, *nodes)

	Get the lowest common ancestor of two or more (Node instances of) nodes in root.

	Parameters

	
	root – A root Node instance.

	*nodes (Node) – Node instances or values in root.

	Returns

	The Node instance that is the lowest common ancestor of (the Node instances of) nodes in root, or None if there is no common ancestor.

Note

Values in nodes must be unique within the binary tree structure of root.

 Python Module Index

 b

 		 	

 		
 b	

 	[image: -]
 	
 binary_tree	

 	
 	
 binary_tree.node	

 	
 	
 binary_tree.tree	

Index

 _
 | A
 | B
 | C
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | P
 | R
 | T
 | V

_

 	
 	__eq__() (binary_tree.Node method)

 	
 	__iter__() (binary_tree.Node method)

 	__repr__() (binary_tree.Node method)

A

 	
 	all_paths() (in module binary_tree.tree)

B

 	
 	binary_tree (module)

 	
 	binary_tree.node (module)

 	binary_tree.tree (module)

C

 	
 	connect_nodes() (in module binary_tree.tree)

F

 	
 	find_path() (in module binary_tree.tree)

 	
 	from_orders() (in module binary_tree.tree)

 	from_string() (in module binary_tree.tree)

G

 	
 	get_lca() (in module binary_tree.tree)

 	
 	get_path() (in module binary_tree.tree)

H

 	
 	has_sum() (in module binary_tree.tree)

I

 	
 	is_leaf() (in module binary_tree.node)

 	is_left() (in module binary_tree.node)

 	is_node() (in module binary_tree.node)

 	
 	is_orphan() (in module binary_tree.node)

 	is_right() (in module binary_tree.node)

 	is_root() (in module binary_tree.node)

 	is_symmetrical() (in module binary_tree.tree)

L

 	
 	left (binary_tree.Node attribute)

M

 	
 	max_depth() (in module binary_tree.tree)

N

 	
 	next (binary_tree.Node attribute)

 	
 	Node (class in binary_tree)

P

 	
 	parent (binary_tree.Node attribute)

 	
 	prev (binary_tree.Node attribute)

R

 	
 	right (binary_tree.Node attribute)

T

 	
 	to_string() (in module binary_tree.tree)

 	traverse() (in module binary_tree.tree)

 	traverse_in_order() (in module binary_tree.tree)

 	
 	traverse_level_order() (in module binary_tree.tree)

 	traverse_post_order() (in module binary_tree.tree)

 	traverse_pre_order() (in module binary_tree.tree)

V

 	
 	value (binary_tree.Node attribute)

 nav.xhtml

 Table of Contents

 		
 Home

 		
 About

 		
 Installation

 		
 Features

 		
 Construct a node

 		
 Check a node

 		
 Set up a binary tree

 		
 Traverse a binary tree

 		
 Analyze a binary tree

 		
 Credits

 		
 Documentation

 		
 Node

 		
 Comparing the value of a Node instance

 		
 Getting the binary tree structure of a Node instance

 		
 Iterating over the binary tree structure of a Node instance

 		
 node

 		
 Checking for a Node instance

 		
 Checking for a child Node instance

 		
 Checking for a Node instance in a binary tree structure

 		
 tree

 		
 Constructing a Node instance with a binary tree structure

 		
 Traversing a Node instance with a binary tree structure

 		
 Analyzing a Node instance with a binary tree structure

_static/file.png

_static/down-pressed.png

_static/down.png

_static/tree.png

_static/minus.png

_static/plus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

